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I. INTRODUCTION

In this report we describe the results of a research program

investigating irradiation - induced defects in silicon, using low tempera-

ture photoluminescence as a probe of defect properties. The goal of this

research was to gain new understanding of defects which degrade solar

cell characteristics in a radiation environment. In this regard, an

important aspect of this program was a study of radiation damage and

annealing in lithium doped silicon, which is useful.in reducing solar

cell degradation.

Luminescence was used to study defects because this property

reveals electron transitions through a number of defect energy levels at

any given annealing stage; the luminescence spectra give excellent resolu-

tion of many defect energy levels; and these measurements can.be used to

give defect symmetry in the lattice, impurity dependence, and annealing

properties.1

Many of the results reported here have been described previously

1 2 3
by Spry, Jones, and Johnson. In some cases where detailed discussion

would detract from the readability of this report, reference is made to

these earlier presentations. The report is divided into several sections.

In Section II we describe the experimental approach to the luminescence

measurements; in Section III we present data on spectra, stress effects,

and annealing; in Section IV we analyze the results and describe our

understanding of the nature of the defects; and in Section V we present a

summary of results and recommendations.
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II. EXPERIMENTAL PROCEDURE AND APPARATUS

2.1 General:Description

The experiment consisted of irradiation of Si samples , measure-

ments of low temperature photoluminescence with and without uniaxial

stress, and annealing of irradiation damage. The luminescence measure-

ments were performed in two systems, one using a 0.5 m Jarrell-Ash

monochromator, and the other using a 0.75 m Spex monochromator. Figure 1

shows schematically the experimental arrangement for the Spex system; the

essential features of the Jarrell-Ash system are similar. The sample was

contained in a liquid helium cryostat with temperature control available

by the rate of pumping of helium into the sample chamber. Electron-hole

pairs were created by light in the visible spectrum which was focused on

the sample. The infrared luminescence was collected and passed through

the monochromator. The output of the monochromator was focused onto a

cooled PbS detector, and the detector signal was processed using standard

lock-in amplifier techniques. The luminescence spectrum was displayed on

a chart recorder and in some cases simultaneously fed into an analog-to-

digital converter which records the appropriate information on magnetic

tape. This tape was then used in conjunction with a computer program to

perform corrections for the system response.

Uniaxial stress was applied to the sample by differential thermal

contraction mountings or by adjustable clamps. Irradiations were performed

in a Van De Graaff accelerator with 0.5 to 3.0 MeV electrons. Annealing

was performed in an oil-bath or in a furnace, depending upon the temperature

range. The defects studied were those which remain at room temperature
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and above. Irradiations were performed slightly below room temperature;

the measurements of the luminescence spectra were made at low temperatures,

typically 100 to 300 K; and annealing studies extended from room temperature

to 6000 C. Methods of investigation included study of line positions and

their shape and temperature dependence, the effects of uniaxial stress on

the position and splitting of lines, and the effects of thermal annealing.

2.2 Sample Preparation

2.2.1 Silicon Samples

All silicon used in the experiment came from single-crystal

boules grown in the (111) direction, except for one (100) sample used in

stress measurement. A description of the silicon used is summarized in

Table 1. The oxygen concentration in pulled silicon is on the order of

10 times that of float zone silicon. Although luminescence has been seen

in samples with a resistivity approaching 0.1 ohm-cm, samples in the resis-

tivity range of 50 to 100 ohm-cm were used in these experiments. Consistently

good luminescence intensity was obtained.

Table 1

Room Temperature
Boule Method Resistivity

Designation of Growth Dopant (ohm-cm) Manfacturer

T Pulled Phosphorus 100 Monsanto
1 Pulled Phosphorus 102 NPC Metals &

Chemicals

L Float Zone Phosphorus 70 Monsanto
-2 Float:'Zone Phosphorus 70 NPC]Metals &

Chemicals

P Pulled Boron 45 Monsanto
M Float Zone Boron 65 Monsanto

J Pulled (100) Phosphorus 75 Semimetals



2.2.2 Cutting and Orientation

Rectangular samples used for broad band spectra measurements were

cut to 2cm X lcm X lmm size from wafers sliced perpendicular to the boule

axis. Stress samples were-cut-from oriented slices to close tolerances

and had the following dimensions: length = 720 mils; width = 120 mils;

thickness = 60 mils. All samples were lapped with #400 grit carborundum

powder on a glass plate to remove saw marks. The stress samples were

g-round to a length between 716-715 mils.. The-other-dimensions-were-'no t

critical. Samples used in stress experiments were cut from boules and 2,and J.

The crystallographic orientation of these samples was determined by Laue

X-ray diffraction techniques.

2.2.3 Lithium Diffusion

Samples used in the study of the effects of diffused lithium

were prepared as above and sent to outside laboratories for diffusion.

Some samples, cut from Monsanto silicon, were lithium doped at the Goddard

Space Flight Center, Greenbelt, Maryland. Other samples, cut from boule 2,

were diffused by Centralab Semiconductor, El Monte, California. The

concentration of electrically active lithium was determined by four-point

probe resistivity measurements. Typically, the lithium concentration was

between 10 and 10 atoms / cm . This concentration is much greater

than the original doping of the silicon; thus the lithium interstitial

donors dominated the conductivity.
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2.2.4 Irradiation

The samples were irradiated with 3.0 MeV electrons from the

University of Illinois Materials Research Laboratory Van de Graaff accele-

rator. Figure 2 shows a schematic of the irradiation sample holder attached

to the accelerator beam port. The electron beam was defocused in the

accelerator and further spread out in passing through the titanium beam-

port window so that the irradiation was uniform over an area larger than

the sample. Additional sheets of titanium were placed at the beam-port

window to further diffuse the beam when several samples were simultaneously

irradiated.

The beam current-and total electron fluence were monitored

with an aluminum Faraday cup of one square centimeter area and a thickness

of 5/8 inch. The cup was mounted directly behind the sample and collected

the current passing through the plane of the sample.

Temperature was measured by a copper-constantan thermocouple.

The thermocouple and the sample were held against the sample holder with

a phosphor-bronze wire spring. The sample was cooled by cold nitrogen

gas directed into the sample holder. Sample temperature was -10 +100 C.

Samples with no diffused lithium were irradiated to 10 e/cm2; lithium-

diffused samples, to 10 e/cm . Samples were turned over after

accumulating half of the maximum fluence so that damage would be more

uniform. All samples were immediately placed in dry ice (-780C) following

accelerator shut down to prevent room temperature annealing.
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2.2.5 Annealing

The sample was removed from storage in dry ice, etched, and

placed in the dewar. The dewar was evacuated and cooled to liquid nitrogen

temperature. This operation took about twenty minutes and is considered

to be a room temperature anneal for that time period. An oil bath of Dow

Corning 704 Fluid was used for annealing samples between room temperature

-and 3000 C. The sample was placed in an aluminum bottle, sealed, and

immersed in the oil. The anneal was rapidly quenched by removing the

bottle from the bath and immersing it in Freon 11. The bath was heated

to the approximate temperature by a flask heater and was maintained within

+ 0.50 C. Temperature was measured by a chromel P-alumel thermocouple

accurate to +0.5 C attached to the aluminum bottle. Samples annealed to

less than 100 C were stored in dry ice to avoid room temperature annealing.

Anneals between 3000C and 7000C were performed in a tube furnace.

Temperature was measured by a chromel P-alumel thermocouple built into

the flat of a quartz spatula used to hold the samples. The oven tempera-

ture was simply controlled with a variac. This method of control

resulted in a slow oven response to variac changes, but temperature

fluctuations were limited to +1 C once stability was achieved. Upon

completion of the anneal, samples were brought from maximum temperature

to room temperature in thirty seconds. Samples used for broad spectra

studies were annealed for twenty minutes. Samples used to obtain

isochronal annealing curves were annealed for fifteen minutes.
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2.2.6 Etching

Samples were etched prior to insertion in the dewar in order to

produce a good optical surface and reduce nonradiative surface recombina-

tion. The etch was CP4A, (5HN03, 3HF) made from Mallinckrodt Transistar

grade chemicals. The etch was quenched by flushing with a large-quantity

of distilled water. The critical dimensions of-stress samples were pro-

tected from etch by painting them with Unichrome Stop Off- Lacquer (323 red

lacquer) thinned with acetone. The lacquer-was easily peeled from the

samples after etch. Samples were dried on filter paper and placed in the

dewar. The dewar was quickly evacuated to minimize the formation of oxide

on the sample.

2.2.7 Mounting

The samples which were measured with no stress applied were held

in place in the cryostat with a phosphor bronze spring. This spring also

held a thermocouple to the sample. The samples used in the stress measure-

ments were mounted in two ways. The first was to hold the sample against

the sample holder using the phosphor bronze spring and apply stress using

adjustable clamps (Fig. 3). In the second method the crystal was placed

in a slot cut in a piece of brass. The slot was milled out so that its

length was 720 mils. This is the same length as the samples and they fit

tightly in this dimension. The thermal contraction A£/£ of brass is

4 X 10
-

3 over the range 3000K, whereas for silicon it is 2.6 X 10 3 for the

same temperature range. When the sample in this brass holder is cooled in

the cryostat, the brass contracts upon the silicon and provides a uniaxial

compression along the length of the crystal.
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2.3 Optical Detection

The detector used in this investigation was a Hughes Santa

Barbara Research Center PbS detector with a maximum defectivity D* of

411cm(Hz)k
4.3-1011 ( The detector was operated at -78°C and was shielded

watt
by a copper cold-shield and a cooled Corning #2540 color filter on which

the radiation from the monochromator impinged.

The-windows, filters, grating, and atmosphere in the optical

path have wavelength dependent transmission properties. The detector

response is also wavelength dependent. Correction factors were calculated

from data obtained using .a blackbody. source in place of the sample.

The ratio of the observed signal to the calculated number of

photons from the blackbody was computed for each wavelength over the

range of wavelengths of interest. The point having the largest ratio

was taken as a point for a correction factor of one. The correction

factor needed to bring each of the other ratios up to this value -was

calculated and plotted as a function of photon energy. 'Monochromator

wavelength-calibration and resolution over the wavelength range 1.05 to

1.70 p were determined using a low-pressure mercury lamp.

.Measurements with the. Spex monochromator reported in this inves-

tigation were made with a 1200 £/mm Bausch & Lomb Replica grating.

Polarizationcorrection factors were also obtained using the

blackbody source and a type HR infrared polaroid placed in the optical

path. The component perpendicular to the stress direction was 3.18 times

more intense than the parallel component. General corrections for

grating polarization were obtained by multiplying the parallel component
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by 3.18. The polarization correction factor was constant over the wave-

length interval 1.180 to 1.195 p, in which stress-split spectra were

observed.

2.4 Data Analysis

The data analysis for luminescence spectra was basically the

same for both monochromator systems. Raw data showing the relative

luminescent intensity as a function of wavelength were recorded on chart

paper. Corrections for wavelength, system response, and normalization

were applied to the data, which was plotted in final form as relative

photon intensity per wavelength interval versus photon energy. These

corrections were made by hand or using the computer program described

above.

The isochronal annealing curve of a luminescence peak was

determined by comparing the intensity of the luminescence peak after

various anneals with the intensity before anneal. For each observation

the sample was annealed, etched, and inserted in the dewar. The cold

dewar was then placed in the monochromator system. The detector dewar

was also removed from the system, evacuated, cooled, and replaced for

each run.

Changes in the luminescence intensity can result from each

of these procedures. Variation in sample luminescence intensity can

also be caused by variations in sample observation temperature and

irregularities in surface treatment. Nevertheless, corrections for these

variations and for the apparatus were determined and applied to the data.
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Variations in the monochromator system's sensitivity-were accounted for

by measuring the signal from the mercury lamp under set conditions with

the sample dewar removed. This measurement accounted for variations in

line voltage to the mercury lamp and the system electronics, the detector

alignment, and the tuning of the lock-in amplifier. The sample dewar

position in the system was duplicated exactly. A correction for amplifier

gain scale setting was also applied. Corrections for variation in sample

observation temperature were made from a plot of intensity as a function

of observation temperature.
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III. EXPERIMENTAL DATA

Data taken during the course of this research will be presented

in this section. These data consist of luminescence spectra from irradiated

silicon which had been annealed both at room temperature and at higher tem-

peratures. Isochronal and isothermal annealing of certain luminescence lines

is also shown. Results for silicon without lithium doping will be presented

first, followed by data on lithium-diffused silicon. The data on lithium-

diffused silicon consist of luminescence spectra, in addition to the results

of extensive measurements on the properties of the major lithium-dependent

center.

3.1. Silicon Without Lithium Doping

Figure 4 shows the intrinsic luminescence spectrum observed from

unirradiated 100 ohm-cm n-type pulled silicon. Similar spectra were seen

in samples from the other boules listed in Table 1. This spectrum is in

excellent agreement with that observed by Haynes, which was attributed

to free exciton recombination.

After irradiation the intrinsic luminescence of Figure 4 is no

longer seen. Instead several lower energy peaks are seen between about

0.5 eV and 1 eV. A typical spectrum observed after irradiation is shown

in Figure 5. Several sharp peaks can be easily distinguished in Figure

5; these have been labeled with the letters A through G. As discussed

below, the half-widths of these lines are less than kT and are not

thermally broadened. Since these peaks do not exhibit phonon participation,

they will be referred to as zero-phonon lines.
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There are two main spectral groups which always seem to appear as

units. Peaks A, B, and C and most of the broad peaks in between have been

observed in the same intensity ratios in all samples measured. Peak D is

seen with this group but its intensity varies exponentially with temperature

with respect to the intensity of peak C. Peaks E and G and most of the

broad peaks in between them form the second group and have always been seen

in the same proportions. Peak F has been seen in only a few samples.

The luminescence observed from irradiated silicon depends

critically on the fluence to which the sample has been exposed. Intrinsic

luminescence was observed for fluence levels below a "threshold"; the

intrinsic luminescence vanished and luminescence involving deep recombina-

tion levels appeared for a fluence above the threshold. At the threshold

fluence, intrinsic luminescence and defect luminescence have similar

intensities. The observed thresholds for boules L, M, T, and P are given

in Table II.

Table II

Material Boule Threshold (3 MeV electrons/cm 2 )

n-type float zone L X 10

p-type float zone M < 1017

n-type pulled T X 1014

p-type pulled P between 1016 and 1017

In general, the increase in defect luminescence intensity produced by

increased irradiation fluence was not linearly proportional to the fluence,

the proportionality vary for samples from different boules. Irradiation
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to high fluence (>1018e/cm2 ) generally reduced the intensity from the

maximum which was obtained for fluences of U1017e/cm2

3.1.1. The 0.79 eV and 0.97 eV Spectra

The strong lines C at 0.79 eV and G at 0.97 eV in Figure 4

were intense enough to be measured over a fairly broad range of temperature

and at various resolutions. The intensity of the 0.79 eV C line peaks at

a 25 K and decreases approximately exponentially at both lower and higher

temperatures. The slope corresponds to 20 meV + 5 meV on the high tempera-

ture side and to -6 meV + 1 meV on the low temperature side.

The halfwidths of the 0.79 eV and 0.97 eV lines as a function of

temperature are shown in Figure 6. A log-log plot of the broadening vs.

temperature can be fit by a straight line with a slope of 3.3 ± .3 for

the 0.79 eV peak. Thus, the broadening goes approximately as T . A

similar plot of the shift in peak position versus temperature shows that

the shift is proportional to T 4 .

Similar results were obtained for the G peak at 0.97 eV. For

this line the intensity peaks at about 35 0K. The high energy slope is

35 meV'+ 5 meV and the low temperature slope is -3.5 meV + 1 meV. The

4 + .7
halfwidth of the line goes approximately as T . The shift in peak

2.4
position goes approximately as T

3.1.2. Other Peaks

The other lines A, B, D, E, and F in Figure 5 all seemed to be

as sharp as the lines C and G when they were measured with the same

resolution. Their intensities were smaller and therefore the resolution
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used to measure them was limited to above 0.4 meV. The intensities of

these peaks all go through a maximum as temperature is varied. The temperature

dependence of these smaller peaks is shown compared to that of strong lines

C and G in Figure 7. The data were taken from one sample during one data

taking session. Peaks A, B, and C all have the same temperature dependence.

Peak D varies exponentially with respect to peak C with an activation energy

of 4.0 meV ± 1 meV. The separation of lines C and D as measured optically

is 5.6 meV. The intensities of peaks C and G are not related in any simple

exponential way.

The integrated intensity of the sharp line C at 0.79 eV is approxi-

mately 1/10 that of the total group from 0.8 eV to 0.5 eV when measured with

a 24 X resolution. This ratio was independent of temperature over the range

examined which was 100K to 450K. The same property was examined by looking

at the ratio of the intensity of the C peak to that of the first broad peak

at 0.76 eV. Again this ratio was constant over the temperature range

measured. Peak G at 0.97 eV gave the same results.

3.2. Annealing Data

3.2.1. n-Type Float Zone Silicon

Figures 8 and 9 show the luminescence spectra from irradiated

n-type float zone silicon after successive twenty-minute anneals in the

temperature range 23 to 600 C. The spectrum observed after room temperature

anneal (bottom Fig. 8) was identical to the spectrum associated with the

0.97 eV zero-phonon line (Fig. 5), with the exception of a tail extending

to higher energy which has a definite point of inflection. This high-

energy tail is referred to subsequently as the "pretail". The pretail
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vanished after anneal at 1000C. Figure 8 also shows the appearance and

disappearance-of the intrinsic luminescence peak I, in the temperature

.range 23 to 3000 C.

Zero-phonon line H (0.953 eV) is shown in the 3000C anneal

spectrum (top Fig. 8). This weak peak is independent of the 0.97 eV

spectrum; it appeared following anneal at 2750C and vanished after anneal

at 3500°C. Figure 9 shows the spectrum following 4000C anneal. The 0.97 eV

spectrum has vanished, leaving a broad band with no prominent structure.

This broad band vanished following 500 0 C anneal, leaving only intrinsic

luminescence peak I. A new spectrum consisting of a series of sharp

lines appeared following 6000C anneal (top Fig. 9).

The center associated with the zero-phonon line at 0.97 eV

was the only strong luminescent center observed in irradiated n-type

float zone silicon for samples annealed in the temperature range 23 to

6000C. The isochronal annealing of the 0.97 eV zero-phonon line is

shown in Fig. 10. The curve drawn is the best fit consistent with the

uncertainty limits of the data. The intensity of this peak increased

by a factor q,30 between 23 C and 100 C. The peak began to anneal out at

2000C, had half-maximum intensity at 2800C, and vanished following 325 0 C

anneal.

3.2.2. p-Type Float Zone Silicon

Figures 11 and 12 show the luminescence spectra observed for

irradiated p-type float zone silicon after successive anneals in the

temperature range 32 to 700 C. The spectrum seen after a twenty-minute

room temperature anneal (bottom Fig. 11) had an unusually intense
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near liquid helium temperature.
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temperature range 23 to 4000 C (Fig. 11). The spectra shown here
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and 7000C. The spectra were observed near liquid helium temperature.
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luminescence at energies greater than 0.97 eV (pretail), and as a consequence,

displays only slight resemblance to the spectrum of the 0.97 eV defect shown

in Fig. 5. Only peak G and its TA phonon replication can be distinguished.

The pretail annealed out near 200 C, leaving a spectrum (top Fig. 11)

identical to that of the 0.97 eV defect. Peak G annealed out by 3000 C.

Figure 12 (bottom) shows a new spectrum that grew in between 3000 C

and 450 C. The most significant feature of this spectrum was the structure

in the energy interval 1.00 to 1.12 eV, dominated by zero-phonon peak J

(1.108 eV). Other structure appearing in this spectrum at photon energies

between 0.95 eV and 0.80 eV was similar to the spectrum of irradiated n-type

float zone silicon at these anneal temperatures (bottom Fig. 9). Peak J

was observed in the spectra from two of the three samples cut from boule M,

and from a single sample of DuPont p-type float zone silicon. In the single

case where this spectrum was not seen, the 400°C anneal spectrum in the

bottom of Fig. 9 was seen instead. Zero-phonon peak H was also seen in

this atypical sample.

All luminescence was quenched by a 5000C anneal. At higher anneal

temperatures (600 to 700 C), two different weak spectra were seen in p-type

float zone silicon. In the first case, the spectrum shown in the middle

of Fig. 12 was seen, and in the second case a spectrum identical to the

top spectrum in Fig. 9 was observed. Further anneal produced the spectrum

shown at the top of Fig. 12. The float zone samples used in this investiga-

tion were examined by a hot-point probe to determine the type of majority
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carrier. The sample designations were found to be correct; therefore, the

variety of spectra could not be explained in terms of mistaken sample

designation.

Figure 13 shows the isochronal annealing of strong zero-phonon

lines G at 0.97 eV and J at 1.108 eV found in p-type float zone silicon.

The annealing curve drawn for peak G is the best fit consistent with the

uncertainty limits of the data. The intensity of peak G increased by a

factor of 430 between anneals at 32 C and 150°C. The peak began to anneal

out near 2000 C, reached half-maximum near 2500 C, and vanished by 3000 C.

Peak J was first observed at 300 C. It reached its maximum intensity at

450°C and vanished at 500 C.

3.2.3. n-Type Pulled Silicon

Figures 14, 15, and 16 show the luminescence spectra from n-type

pulled silicon after successive anneals in the temperature range from 32

to 600 C. The room temperature anneal spectrum shown in the bottom of

Fig. 14 is consistent with the spectra shown in Fig. 5. In addition, a

weak pretail was observed in this spectrum at very high gain. The form of

the pretail usually resembled those observed in spectra from float zone

silicon. On two occasions, however, the structure shown in the bottom

of Fig. 14 was seen; the pretail vanished following anneal at 50 0 C. Peak

G began to anneal out at 200 0C and vanished at 2750 C.

Three new zero-phonon peaks were observed following 400 C anneal.

These are designated as F (0.950 eV), K (0.925 eV), and L (0.767 eV) in

the bottom of Fig. 15. Further anneal to 4500 C reduced the intensity of

peaks C and F (top Fig. 15). Peaks K and L were observed through the
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Luminescence spectra from n-type pulled silicon irradiated to a
fluence of 1017 e/cm2. The full spectra shown were observed after
twenty-minute room temperature (230°C), 250, and 3500 C anneals. A
partial spectrum shows the structure at high energy under high gain.
The partial spectrum has been translated vertically. The spectra
were observed near liquid helium temperature.

I



32

a- 20
H

o 100 -

80

60

40

20

0 O

Figure 15.

0.85 0.90 0.95 1.00 1.05 1.10 1.15
Photon Energy (eV) LP-660

Luminescence spectra from n-type pulled silicon irradiated

to a fluence of 1017 e/cm2. The sample was previously
annealed in the temperature range 23 to 3500°C. (See Fig. 14)

The full spectra shown here were obtained after additional
twenty-minute anneals at 4000 C and 4500C. A partial spectrum

of weak luminescence at high energy observed following 4500C
anneal is shown in the upper figure. The spectra were

observed near liquid helium temperature.
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Figure 16. Luminescence spectra from n-type pulled silicon irradiated
to a fluence of 1017 e/cm2. The sample was previously
annealed in the temperature range 23 to 4500 C (See Figs.
14 and 15). The spectra shown here were obtained after
additional twenty-minute anneals at 5500°C and 6000 C.
The spectra were observed near liquid helium temperature.
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5000C anneal. The bottom of Fig. 16 shows a spectrum of unusual structure

accompanying the intrinsic luminescence following 550 C anneal. Only weak

intrinsic luminescence was seen following 600 C anneal. The intensity of

the intrinsic luminescence remained at 3% of the preirradiation value through

anneal to 7000CO

The isochronal annealing of the prominent zero-phonon peaks

observed in n-type pulled silicon is shown in Fig. 17. Annealing curves

are shown for peaks C (0.79 eV), G (0.97 eV), F (0.950 eV), K (0.925 eV),

and L (0.767 eV). The observed intensities were normalized to the maximum

intensity of peak C.

Isothermal annealing data for peak G (0.97 eV) is shown in Fig.

18. The annealing follows first-order kinetics. The calculated activation

energy for this annealing is approximately 1.3 eV.

3.2.4. p-Type Pulled Silicon

Spectra from p-type pulled silicon annealed in the temperature

range 23 to 600 C are shown in Figs. 19, 20, and 21. The spectra-were

very similar to those seen in n-type pulled silicon, with the following

exceptions: The intensity of peak C (0.79 eV) was reduced relative to

peak G (0.97 eV) following anneal at room temperature (bottom Fig. 19);

on no occasion was structure observed in the room temperature pretail;

the intensity of zero-phonon peaks F, K, and L was reduced; a new zero-

phonon peak, M, at 0.760 eV, was observed in the 350 C anneal spectrum

(bottom Fig. 20); the weak spectra observed after 5000 C and 5500C anneal

are unique to p-type pulled silicon (bottom Fig. 21); and, the intrinsic

luminescence intensity returned to a value approximately equal to the
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Figure 17. The isochronal annealing of zero-phonon peaks C (0.79 eV),
G (0.97 eV), F (0.950 eV), K (0.925 eV), and L (0.767 eV),
in n-type pulled silicon.
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Isothermal annealing of the 0.97 eV zero-phonon line in n-type
pulled Si after irradiation with 3 MeV electrons to a fluence
of 1018 electrons/cm2 . The inset shows the temperature depen-
dence of the time to half recovery (T

1 / 2
) for calculation of

the activation energy.
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Figure 19. Luminescence spectra from p-type pulled silicon irradiated
to a fluence of 1017 e/cm2. The full spectra shown were
observed after twenty-minute room temperature (230°C) and
2500 C anneals. Partial spectra at high gain of the
luminescence at high energy are shown in the bottom of
the figure. The spectra were observed near liquid helium
temperature.
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Luminescence spectra from p-type pulled silicon irradiated to
a fluence of 1017 e/cm2. The sample was previously annealed
in the temperature range 23 to 2500 C (See Fig. 19). The
spectra shown here were obtained after additional twenty-minute
anneals at 350, 450, and 5000C. The spectra were observed near
liquid helium temperature.
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preirradiation value following anneal at 700 K.

The isochronal annealing curves of prominent zero-phonon peaks

observed in p-type pulled silicon are shown in Fig. 22. The peaks shown

are C (0.79 eV), G (0.97 e~V, F (0.950 eV), K (0.925 eV), L (0.767 eV), and

M (0.760 eV). The observed intensities were normalized to the maximum

intensity of peak G.

One must consider the possibility that the luminescence observed

following high-temperature annealing arose not from defects induced by

irradiation but from thermally introduced defects; this possibility led

to an examination of the spectra of unirradiated annealed silicon. The

following unirradiated samples were examined after annealing and routine

quenching from the indicated temperatures: n-type float zone - 4000 C;

p-type float zone - 450, 500, and 6000C; and, n-type pulled - 5000 C. In

each case, only intrinsic luminescence was observed.

3.2.5. Summary

The threshold fluence for most materials was between 1016 e/cm2

and 10 e/cm . Only in the case of n-type pulled silicon was it apprec-

iably lower (1014 e/cm2).

The intensity of peak G (0.97 eV) following room temperature

anneal was lower by a factor of 5 to 15 in float zone silicon than it

was in pulled silicon. The maximum intensities of peak G obtained during

the annealing sequences were similar for float zone and pulled silicon.

Luminescence of energy greater than 0.97 eV found following

room temperature anneal was more prominent in float zone silicon than

in pulled silicon; it was more prominent in p-type than in n-type
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Figure 22. The isochronal annealing of zero-phonon peaks C (0.79 eV),
G (0.97 eV), F (0.950 eV), K (0.925 eV), L (0.767 eV), and
M (0.760 eV), in p-type pulled silicon.
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silicon.

Peak G (0.97 eV) annealed out between 3000 C and 3250C in float

zone silicon, and vanished at 275 0C in pulled silicon.

Peak C (0.79 eV) had a broad annealing stage that began between

2500 and 3500C and was not completed until about 500 0 C.

Peak J was the only prominent zero-phonon peak found in p-type

float zone silicon during high temperature anneal (to 500°C).

Peaks F, K, L, and M were observed during high temperature anneal

of pulled silicon (to 500 C).

In general, irradiation-induced luminescence was quenched or very

weak following anneal at temperatures. between 500 C and 600°C.

Annealing above 600 C produced complex spectra in float zone

silicon; only intrinsic luminescence was observed from pulled silicon

annealed at this temperature.

3.3. Lithium-Diffused Silicon

The lithium-diffused silicon used in this investigation was

always n-type after diffusion due to the large concentration of lithium

donors. When reference is made to p- or n-type lithium-diffused silicon

in the following sections one means the conductivity type prior to lithium

diffusion.

Intrinsic luminescence associated with free exciton recombination

was observed at low intensity in unirradiated lithium-diffused silicon.

This result was somewhat unexpected because most of the lithium samples

examined had electrically-active lithium concentrations on the order

of the impurity concentration for which Haynes reported bound exciton
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spectra. Furthermore, it appeared that the position of the strong TO

line shifted to higher wavelength with increasing lithium concentration.

The maximum shift observed was 200 % for a lithium concentration of 1018

3 16
atoms/cm . No shift was observed for a lithium concentration of 3.10

atoms/cm3

3.3.1. Lithium-Diffused Float Zone Silicon

It is difficult to use the concept of threshold fluence, as

previously defined, in the case of lithium-diffused silicon for two

reasons. First, the intrinsic luminescence was observed to vanish without

the appearance of strong defect luminescence, and second, there was some

evidence that the fluence at which the intrinsic luminescence vanished

depends on the lithium concentration. In spite of these drawbacks, some

general comments concerning fluence can be made. Intrinsic luminescence

vanished after a fluence of about 10 e/cm . Weak luminescence attributed

to irradiation-induced defects was seen following irradiation to a fluence

of 1017 e/cm ; strong defect luminescence was consistently produced by an

irradiation fluence of 10 e/cm2 .

The luminescence spectrum from irradiated lithium-diffused float

zone silicon after room temperature annealing is shown in Fig. 23. This

spectrum is dominated by zero-phonon peak Q at 1.045 eV and shows no resem-

blance to the spectra observed in non-lithium-doped float zone silicon.

However, peak G (0.97 eV) was occasionally observed as a small peak super-

imposed on the spectrum of Fig. 23. Peak G was most commonly observed in

lithium-doped samples with low lithium concentrations (10 16atoms/cm3 ) ,

but no single parameter affecting its appearance could be determined.
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Figure 23. Luminescence spectrum typical of lithium-diffused n- or

p-type float zone silicon irradiated to a fluence of 1018

e/cm2 . The sample used to obtain this spectrum had a
lithium concentration of 5.5.101 6 atoms/cm3.. This spectrum
is associated with the recombination center responsible

for zero-phonon peak Q at 1.045 eV. The spectrum was
observed at 12.80 K.
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Figure 24 shows a portion of the spectrum shown in Fig. 23

taken with higher resolution. This higher-resolution spectrum reveals a

number of weak peaks which seemed to be as sharp as Q and do not appear

to involve phonon cooperation. These peaks are designated N (0.990 eV),

0(0.997 eV), P (1.013 eV) and R (1.045 eV) in Fig. 24. An additional

zero-phonon peak appears to exist at 0.9825 eV. Further investigations

cast doubt on this assignment and the correct assignment remains an

open question.

Consistent isochronal annealing of peak Q was not possible.

The intensity of this peak was found to increase as a function of anneal

temperature in some samples and to decrease over the same temperature

range in others. Undoubtedly, lithium concentration is of tremendous

importance. The temperature at which a defect vanishes should be a

property of the defect, whereas intensity variations at lower annealing

temperatures will depend on competitive processes. Therefore, the

determination of an annealing temperature is reasonably significant. The

defect associated with peak Q (1.045 eV) was found to anneal out between

4000 C and 4500C in n-type float zone silicon. Peaks N, 0, P, and R

maintained a constant ratio with peak Q and annealed out in the same

temperature range. Therefore, the entire spectrum shown in Fig. 24 can

be assumed to be due to a single defect.

Figure 25 is a composite of the spectra observed from annealed

lithium-diffused n-type float zone silicon. The room temperature spec-

trum (bottom Fig. 25) and its annealing have already been discussed. New

zero-phonon peaks S (0.947 eV), T (0.970 eV), and U (1.025 eV) appeared
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Figure 24. Luminescence spectrum from lithium-diffused n-type float

zone silicon irradiated to a fluence of 1018 e/cm2. The

monochromator resolution is 16 A. Weak zero-phonon peaks

N (0.990 eV), 0 (0.977 eV), P (1.013 eV), and R (1.048 eV)

are shown. The spectrum was observed at 14.20 K.
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following 4500 C anneal. Peaks S and U vanished following 5000 C anneal

and only the weak peak T remained. The annealing of p-type float zone

silicon was taken to 200 C and no changes in the spectrum shown in Fig. 23

were observed.

3.3.2. Lithium-Diffused Pulled Silicon

Figure 26 shows the spectrum of irradiated lithium-diffused n-type

pulled silicon following room temperature anneal. The dominant luminescence

observed was characteristic of the 0.97 eV defect; traces of peaks C and Q

were also observed in addition to a broad peak at low energy. Additional

structure, not seen in lithium-free n-type pulled silicon, was observed

between peaks C and E.

Luminescence spectra from irradiated lithium-diffused p-type

pulled silicon annealed in the temperature range 23 to 600 0C are shown

in Fig. 27, 28 and 29. Only luminescence associated with zero-phonon peaks

C and G was observed following room temperature anneal (bottom Fig. 27).

New zero-phonon lines V (0.785 eV) and W (0.878 eV) grew in slowly during

successive anneals at 100 C (top Fig. 27), 2000C (bottom Fig. 28), and

300 C (middle Fig. 28). Peak Q was observed following 200 C anneal and

vanished following 350 C anneal. Further annealing at 400 C (top Fig. 28)

and 500 C (bottom Fig. 29) produced peak X (1.001 eV). Weak luminescence

with little structure was observed following 600 C anneal.

The annealing of zero-phonon peaks G and C is of interest in

lithium-diffused silicon. Peak G annealed out near 300 C, a result

consistent with results for lithium-free silicon. Peak C, however,

annealed out near 400 C, which is roughly 100 C lower than its annealing
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Figure 26. Luminescence spectrum from lithium-diffused n-type pulled
silicon irradiated to a fluence of 1018 e/cm2 and annealed
for twenty-minutes at room temperature (230 C). Zero-phonon
peaks which may be recognized are C, E, G, and Q. The
spectrum was observed at 16.40 K.
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Luminescence spectra from lithium-diffused p-type pulled

silicon irradiated to a fluence of 1018 e/cm2. Spectra

observed aftertwenty-minute room temperature (230), and

1000 C anneals are shown. The spectra were observed near
liquid helium temperature.
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Figure 28. Luminescence spectra from lithium-diffused p-type pulled silicon
irradiated to a fluence of 1018 e/cm2 . The sample was previously
annealed in the temperature range 23 to 1000C (See Fig. 27).
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Luminescence spectra from lithium-diffused p-type pulled

silicon irradiated to a fluence of 1018 e/cm2. The sample

was previously annealed in the temperature range 23 to 4000°C

(See Figs. 27 and 28). Spectra shown here were observed

following successive 5000C and 6000 C anneals. The spectra

were observed near liquid helium temperature.
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temperature in lithium-free pulled silicon. In addition, peaks F, K, and

L, appeared in lithium-diffused pulled silicon at approximately the same

temperature as they did in lithium-free silicon.

The annealing characteristics of lithium-diffused n- and p-type

pulled silicon were similar up to 350 C. The major difference was that the

weak lithium-dependent peaks seen in p-type silicon following anneal at

200 C appeared in n-type silicon after room temperature anneal. The

intensity of the peaks in n-type material was different from peaks observed

in p-type silicon, however. Nevertheless, the energy agreement of the peaks

suggested this is a population effect and not a result of different defects.

3.3.3. Summary of Lithium-Diffused Silicon Spectra

Intrinsic luminescence was generally quenched after irradiation

to a fluence of 1016 e/cm2; strong defect-luminescence spectra were observed

18 2
after irradiation to a fluence of 10 e/cm

Luminescence involving a center which is dependent on lithium for

its formation was observed in irradiated lithium-diffused float zone silicon

annealed at room temperature. Peak Q (1.045 eV) was the dominant zero-phonon

peak in this spectrum, but weak zero-phonon peaks N, 0, P, and R were also

associated with this center. The center annealed out near 400 0 C.

Zero-phonon peaks S, T, and U were observed in lithium-diffused

n-type float zone silicon at anneal temperatures between 450 0C and 5000 C.

Luminescence spectra from irradiated lithium-diffused pulled

silicon presented a mixture of lithium-dependent centers and centers seen

in lithium-free silicon. Centers associated with lithium-free silicon,

such as G and C, were more prominent in p-type than in n-type lithium-
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diffused silicon for annealing temperatures less than 200 0 C. Zero-phonon

peaks Q, V, W, and X were dependent upon lithium for their formation.- The

intensity of zero-phonon peak Q, the dominant luminescent peak in irradiated

lithium-diffused float zone silicon, was always relatively weak in pulled

silicon.

3.3.4. The Nature of the Dominant Lithium-Dependent Center

The spectrum shown in Fig. 23 was always observed as a unit;

it was also observed to anneal out as a unit. This spectrum was there-

fore attributed to recombination at a single center. Data on the proper-

ties of the prominent zero-phonon peak at 1.045 eV, which provide detailed

information of the microscopic properties of this center, are discussed

here.

Most of the data on the temperature-dependent propertiesof

peak Q were taken using a sample of lithium-diffused p-type float zone

silicon (lithium concentration 7-10 6atoms/cm ) which had been irradiated

to a fluence of 10 e/cm . Maximum intensity was observed at 14 K, with

an approximately exponential decrease at higher temperature.

Measurements of the half-widths as a function of temperature

for zero-phonon peaks Q and R exhibit sublinear temperature dependencies

as was the case for peaks C and G (see for example, Fig. 6). The

2.1
broadening for peak Q varies approximately as T . A log-log plot of

the broadening for peak R as a function of temperature does not give a

straight line. A log-log plot of the shift in the position of peak Q as

a function of temperature gives a straight line with a slope of 2.78 +

0.5. Therefore, the shift varies approximately as T .
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The separation between zero-phonon peaks Q and R increased

linearly with temperature. The closest separation, extrapolated to T = 0 K,

was 33.6 a. This separation corresponds to an energy of 2.96 meV; at 700K

the separation was 3.18 meV..

3.4. Stressed Samples

Samples with and without lithium doping were stressed along

crystallographic directions and the effects of this stress on the luminescence

spectra were measured. The narrow half-widths of the zero-phonon lines made

it possible to measure shifts and splitting produced by stress. The most

extensive stress measurements were made on the strong C line at 0.79 eV, the

G line at 0.97 eV, and the Q line at 1.045 eV (in lithium-doped material).

As an example of these results, Fig. 30 shows the stress dependence

of the 0.79 eV peak for various stress directions. Both shifting and splitting

of the peak is evident in this figure. Summaries of the stress data for peaks

Q, C, and G are represented schematically in Figs. 31 to 33. Included in

these figures are the effects of polarization.

C2
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IV. Analysis and Conclusions

4.l Nature of the Transitions

The temperature dependence of the halfwidth of line 0.79 eV

given in Fig. 6 is typical also of lines G and Q. If a free carrier

were involved in these transitions the line widths would be thermally

broadened. The halfwidth of a Boltzmann distribution is approximately

2 kTo Such a broadening can be seen, for example, in the width of the

free -exciton.-nba-nd-,tolbalnd...luminescence..in.uni r adiated--i4icon. It is

clear from the data that the halfwidths of peaks C, G, and Q are much

smaller than kT. In addition, the halfwidths do not depend linearly

upon temperature. This indicate that a transition between a bound state

and one of the bands is unlikely. We conclude, therefore, that the

transition in each case is between two bound states.

There areseveral types of transitions involving bound states

in silicon which have been investigated experimentally and theoretically.

The various possibilities have been discussed in detail in References

2 and 3. Of the possible bound transitions, the most likely process

involves a neutral defect which has a trapping level for one type of

carrier. The opposite:carrier is then bound by Coulombic.attraction,

and the radiation process occurs when the bound electron and hole

recombine.

The characteristic form of the luminescence-with a sharp zero-

phonon line and lower energy phonon assisted peaks is due to transitions

in the crystal which are analogous to the Mossbauer effect for nuclear

transitions. In the-Mdssbauer effect an excited nucleus. decays by.
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giving off a gamma-ray. If the recoil momentum of the nucleus is smaller

than its zero point momentum, there will be a finite probability of

leaving the nucleus in its ground state. The transition results in a

narrow zero-phonon line. In the case of an optical transition at a

crystal defect, the surrounding atoms have different equilibrium posi-

tions depending on whether the electron is in an excited state or the

ground state. If the recoil momentum of the surrounding lattice atoms

is smaller than the ground state momentum, there will be a finite proba-

bility for a zero-phonon transition. The lower energy bands then involve

the transitions taking place along with the emission of phonons.

4.2 Identification of Peaks G(0.97eV) and C(0.79eV)

4.2.1 Stress Measurement

The narrow half-widths of the zero-phonon lines make it possible

to measure shifts and splitting produced by stress (Fig. 30). The

splittings depend upon the defect symmetry, the electronic-wave functions,

and any defect reorientation or electron redistribution which takes place

under the stress.

Group theory helps make the analysis more specific. For each

defect symmetry class group theory indicates what the degeneracies are

and where the orbital dipole moments can be directed. For each symmetry

class and type of transition, for example electric dipole, magnetic

dipole etc., the splittings and the polarizations can be calculated. Cal-

culations of this type have been done for defects in cubic:crystals by

A. A. Kaplyanskii and Hughes and Runciman.6 The results of the stress
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data on the luminescence peaks have been discussed in detail in Reference

2. For the C peak at 0.79 eV the pattern suggests a (100) defect and

the pattern corresponds to that expected from a (100) tetragonal E to E,

doublet to doublet, electric dipole transition. The pattern expected

from a tetragonal (100) singlet to singlet transition is similar to the

observed pattern, except that the close doublets are single lines. The

fit between the 0.79 eV C peak and the tetragonal patterns is not good

enough to make a positive identification. The single line observed

under [111] stress is characteristic of a defect oriented along a

(100) axis, but some of the polarizations and smaller splittings do not

compare. The splitting of the G peak at 0.97 eV is consistent with the

pattern for a trigonal [lll] A-E, singlet to doublet, transition.

4.2.2 Correlation of Peak G(0.97 eV) with the Divacancy

Figure 34 is a composite of the isochronal annealing data for

peak G. The figure shows that peak G begins to anneal at 2250 C and

vanishes in the temperature range 275 to 325 C. Annealing occurs at a

slightly higher temperature in float-zone silicon than in pulled silicon.

*Furthermore, the data for p-type float zone silicon suggest a two-stage

annealing process, whereas the data for pulled silicon suggest a single-

stage annealing process.

All of these observations are in agreement with the annealing

behavior of the divacancy. The most extensive data on divacancy annealing

7, 10has been obtained from a study of the 1.8. 8 optical ..absorption.band.

As in the luminescence data, the divacancy absorption vanished in the
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neighborhood of 275 to 3250 C. Divacancy annealing occurs at a slightly

higher temperature in float zone silicon than in pulled silicon; furthermore,

the annealing in float zone silicon is a two-stage process, in contrast to

the single stage observed in pulled materials. Exact agreement of the

luminescence data with the absorption data cannot be expected because the

techniques have different detection thresholds and different annealing

schedules were performed.

Corelli observed that two-stage divacancy annealing in float zone

silicon was enhanced by an increase in dopant impurity concentration, and he

suggested that the dissociation of a defect involving dopant impurities could

influence the annealing of the divacancy. Corelli suggested that the anneal-

ing properties of the E- and A-centers may contribute to several divacancy

annealing properties. The E-center anneals near 150 C and is the dominant

center produced by irradiation in phosphorus-doped float zone silicon, whereas

the A-center anneals near 3500 C and is the dominant center in phosphorus-doped

pulled silicon. The annealing of the E-center and the accompanying release

of vacancies could be responsible for two-stage divacancy annealing, whereas

the low E-center production in pulled material and stability of the A-center

could account for single-stage divacancy annealing in pulled silicon.

Several other properties of zero-phonon peak G are in good agree-

ment with the properties of the divacancy. Isothermal annealing measurements

of peak G in pulled silicon show that the activation energy is -1.3 eV (Fig. 18).

This result is in agreement with EPR9 and optical absorption
1
0 measurements,

which show the divacancy activation energy to be -1.30 eV and -1.25 eV, respec-

tively. The stress splittings of peak G best fit the trigonal (111) axial sym-

metry of the vacancies comprising the divacancy comples. Peak G is observed
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in both pulled and float zone silicon, in agreement with the results of

optical absorption
1 0

'
1
1 and EPR studies of the divacancy.

The doping-impurity independence of the energy of peak G is

important. This evidence is used, with other arguments, to eliminate

from consideration those interstitial impurity defects which have

annealing properties nearly identical to zero-phonon peak G. More generally,

this impurity independence can be used to eliminate from consideration all

centers involving dopant impurities.

Identification of peak G with the A-center is unlikely. The

A-center is an oxygen-vacancy pair -and may be visualized as a nearly sub-

stitutional oxygen with two tetragonal bonds
1
2 in a plane along a (110)

axis. These bonds and the long bond in a perpendicular plane between the

nearest silicon atoms give the defect (110) axial symmetry. As mentioned

previously, the stress splittings of peak G best fit the trigonal (111)

symmetry class. Also, several features of the annealing data indicate

that the A-center is inconsistent with the properties of peak G.3 Finally,

direct and indirect measurements of the A-center population agree that

the A-center production rate is higher in pulled material than in float

zone material. This fact is not inconsistent with the data for peak G

shown in Fig.-34. It should be pointed out, however, that the maximum

intensity of peak G measured during the anneal sequence is slightly higher

in float zone silicon than in pulled silicon. It is difficult to under-

stand how the A-center population in float zone silicon, which is of the

order of the detection threshold of microscopic probes, could be influenced

by annealing such that float zone silicon would have a greater-A-center
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population than pulled silicon.

Thus, close examination shows that the A-center symmetry, anneal-

ing, and population properties do not agree with the respective properties

of peak G. Only the energy level shows close agreement and that appears

to be coincidental.

The mass of the evidence supports the identification of the recom-

bination center responsible for peak G (0.97 eV) with the divacancy. The

annealing properties and symmetry are in good agreement with this associa-

tion. The impurity independence of peak G rules out identification with

dopant impurities, and impurity complexes involving oxygen, carbon, or

germanium also seem unlikely. There are, however, several questions which

may be raised regarding the association of peak G with the divacancy.

The defect energy level associated with peak G can be no deeper

than 0.19 eV from a band edge. None of the energy levels reported for the

divacancy satisfy this requirement. 5 The shallowest level reported is

at E + 0.25 eV. A review of the literature on the divacancy energy levels
v

shows that this problem is not as serious as it first appears. Divacancy

levels obtained from EPR studies were reported at E - 0.40 eV, E - 0.55 eV,

and E + 0.25 eV. 1 6 1 7 Photoconductivity levels at E - 0.39 eV and
v c

18
E - 0°54 eV were also associated with the divacancy; these levels are
c

in good agreement with the EPR levels. However, the literature does not

give a consistent value for the energy of the shallow levels. Until

these ambiguities are resolved by a consistent interpretation, one can only

state that a shallow divacancy level exists. This is consistent with the

data for peak G.
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Although not explicitly shown in the data because normalization

was based on maximum intensity, the absolute intensity of peak G following

room temperature anneal was -5 to 15 times greater in pulled silicon than

in float zone silicon, consistent with the difference in divacancy produc-

tion rates for these materials. The increase in the intensity of peak G

during annealing in float zone silicon and the relative lack of increase

in pulled silicon is consistent with the fact that divacancies are readily

formed by vacancy-vacancy trapping in float zone silicon, whereas this

mechanism is severely restricted in pulled silicon.

4.2.3 Correlation of Peak C (0.790 eV) with the K-Center

The annealing properties of peak C are unusual because of the

wide temperature range over which the peak was observed. A well-known

center identified in EPR studies which has similar annealing properties

19,20
is the K-center. A comparison of the annealing data for peak C and

the K-center is shown in Fig. 35. The K-center annealing is shown only

for p-type pulled silicon because the charge state in which the EPR

spectrum can be observed is found only in this material. The annealing

curve of the peak C in p-type pulled silicon is in excellent agreement

with the K-center annealing. The annealing curve of peak C in n-type

silicon does not compare as well with the K-center annealing but the

essential features of observation over the same wide temperature range

and persistence to 500 C continue to suggest correlation with the K-center.

20
Goldstein suggested that the reverse annealing of the K-center observed

at 2500C is due to the formation of K-centers during divacancy annealing.
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A similar reverse annealing for peak C at 3500 C in n-type pulled silicon

could be due to A-center annealing. It should be pointed out, however,

that optical absorption studies have shown no appreciable difference

between the A-center concentration in p- and n-type pulled silicon,
2 1

so that no explanation may be given for the lack of reverse annealing of

peak C in p-type pulled silicon.

Other properties of the center responsible for peak C are in

agreement with the K-center. Both centers are observed in pulled silicon

but not in float zone silicon, the K-center being the dominant paramagnetic

center in p-type pulled silicon.9 The energy level of the center asso-

ciated with peak C can be no deeper than 0.37 eV from a band edge. The

energy level associated with the K-center, at E + 0°3 eV, is in good

agreement.

The only major point of disagreement concerns the symmetry.

We have shown that the stress splittings of peak C are best described by

the symmetry class tetragonal (100), whereas Goldstein observed a

K-center symmetry axis of (221). This contradiction has not been resolved.

4.3 Luminescence in the Energy Region 0.98 to 1.16 eV - Pretail

A broad band of irradiation-dependent luminescence was observed

between 0.98 and 1.16 eV in all samples following a twenty-minute room

temperature anneal. The pretail is not a part of the spectrum shown in

Fig..5 associated with peak G. It is generally structureless; that is,

there are no zero-phonon peaks or phonon replication. The intensity of

the pretail is greater in float zone silicon than in pulled silicon.; it
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is also greater in p-type silicon than in n-type silicon. It follows that

the pretail is most intense in p-type float zone silicon and least intense

in n-type pulled silicon. In pulled silicon the pretail anneals out at

a lower temperature (<1000C) than it does in float zone silicon (<200°C).

A model for the process which may be responsible for this

luminescence has been presented. The model suggests that carbon is

involved in the defect responsible for this luminescence. This model is

speculative and awaits further investigation. Therefore, it will not be

explored here.

4,4 The High-Temperature Anneal Spectra

The luminescence spectrum associated with zero-phonon peak G at

0.97 eV was shown to vanish following anneal near 3000C. It was also

shown that a number of different spectra, whose profiles were similar but

not identical to the 0.97 eV spectrum, grew in upon further annealing in

the temperature range 300 to 6000 C. Each of these spectra was charac-

terized by a sharp zero-phonon peak which grew in and annealed out

independent of the other spectra. Thus, zero-phonon peaks F, H, J, K, L,

and M seen following high-temperature anneal may each be associated with a

unique defect.

It is of interest to compare the annealing data from the present

22,23
work with that from a previous Russian investigation. The annealing

data reported by the Russian authors are shown in Fig. 36. The Russian

measurements were taken at liquid nitrogen temperature. At this tempera-

ture the silicon band-gap is -1.162 eV as compared to 1.165 eV at liquid
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Figure 36. Isochronal annealing (twenty-minute anneals at 250 intervals) of
the various zero-phonon peaks observed by Russian authors. The
phosphorus concentration in n-type silicon was 5'1015 atoms/cm3
whereas the boron concentration in p-type silicon was 1.1015 atoms/
cm3. The samples were irradiated by Co 0° gamma-rays to a fluence
of 5.1017 / cm2 (after Yukhnevich, Tkachev, and Bortnik2 3).
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helium temperature. Therefore, one would expect the energy of the zero-

o
phonon peaks taken at 77 K to be shifted to lower energy with respect to

the data taken at liquid helium temperatures by -3 meV. The comparisons

which-may be made between the Russian data and that from the present inves-

tigation follow.

The energy of peak A'(0.967 eV) in the Russian data compares

well with peak G (0.970 eV). The Russian annealing data for this peak is

also in excellent agreement with the annealing of peak G in pulled material.

Peak C' (0.790 eV) in the Russian data is the equivalent of peak

C (0.790 eV) seen in this investigation. The Russians observed this peak

to grow in by a factor -10 between room temperature and 200 C in contrast

to the limited growth observed for peak C in the present investigation.

The lack of any reverse annealing stages and a lower annealing temperature

at which peak C' vanishes are also in contrast with the results of the

present investigation.

Peaks-D (0.945 eV) and E'(0.922 eV), observed by the Russians

in n-type pulled silicon, correspond to peaks F (0.950 eV) and K (0.925 eV)

observed in the present investigation. The annealing of peaks D' and E'

correspond to that of peaks F and K (Figs. 17.and 22), except that the

maximum for peak-D' occurs -250 C lower than the maximum for peak F. The

Russian authors observed these peaks only in n-type pulled silicon and

attributed them to centers dependent on phosphorus for their formation.

An important result of the present investigation is that these peaks appear

in both n- and p-type pulled silicon; therefore, the corresponding defects

are. no.tdependen.t on...doping. impurities bu.t..only on...impurities .such.as
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oxygen, carbon, and perhaps germanium, which are present in larger concen-

trations in pulled silicon than in float zone silicon.

Weak, broad peaks, designated as I1, I2, and I3 were also

observed by the Russian authors. These peaks were not observed in the

present investigation. It seems likely, however, that zero-phonon peak

L (0.767 eV), which did appear in the present investigation at the same

energy as I1 may have been misinterpreted as a broad band by the Russians

due to temperature broadening at their higher temperature of measurement.

It is known that heat treatment of pulled silicon at temperatures

-5000C produces oxygen aggregates which act as donors.24 Luminescence

peaks F, K, L, and M cannot be related to such aggregates, since these

peaks have been shown to be irradiation dependent. No such peaks appear

after heat treatment of unirradiated pulled silicon.

A number of irradiation-induced optical absorption bands which

have annealing properties similar to peaks F, K, and L, have been observed

in pulled silicon. At the present time only speculative correlation can be

made between the luminescence peaks and these absorption bands, because

little is known about the luminescence peaks and absorption-bands other

than their annealing properties and that they involve residual impurities

3
found in pulled silicon. Since correlations of these lines with known

defects is speculative, they will not be discussed here.

4.5 Recombination Luminescence from Irradiated Lithium-Diffused Silicon

4.5.1 Float.Zone Silicon
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In this section we discuss the data involving lithium-doped

material. Since the results for oxygen-rich (pulled) and oxygen-lean

(float zone) material are quite different, we present these materials

separately.

.Peak Q, which dominates lithium-doped float zone material, is

a zero-phonon line due to a bound-to-bound transition. Comments presented

in relation to peaks C and G apply to this line.

The data presented in Chapter III show that lithium impurity has

a large effect on the luminescence spectra from irradiated silicon. In

lithium-diffused float zone silicon (I 5-1016 Li/cm3 ) the luminescence

spectrum associated with peak G is not present and is replaced by a spectrum

(Fig. 23) from a new recombination center.

Lithium doping shifts the energy of the intrinsic free exciton

recombination but does not quench the luminescence. Irradiation to a

fluence of approximately 1016 e/cm2 quenched the intrinsic luminescence

in lithium-doped silicon, but produced no defect luminescence. The recom-

bination centers formed must be of a nonradiative nature. Strong lumines-

cence from the new spectrum was not observed until the fluence reached 1018

e/cm . This fluence is an order of magnitude greater than that needed to

see luminescence of comparable intensity from peaks C and G in lithium-free

pulled silicon. This suggests that the production of the new center is

quite low, on the same order as the direct divacancy production rate in

lithium-free float zone silicon. A second explanation for the high fluence

might be that the luminescence efficiency is low for the center associated

with peak Q. It will not be possible to distinguish between intensity
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differences due to differences in defect introduction rate and luminescence

efficiency until the luminescent centers are positively identified and their

production rates measured by some other technique.

The impurity concentrations present in the lithium-diffused float

zone silicon samples used in this investigation were estimated to be::

boron or phosphorus, -5-10 atoms/cm3; oxygen, <10 atoms/cm3; carbon,

<10 atoms/cm ; and lithium, >5-10 atoms/cm3. Boron and phosphorus are

not involved in the defect responsible for peak Q in this material, since

the luminescence is independent of these impurities. The defect does not

involve oxygen or carbon, since these trace impurities appear with greater

concentrations in pulled silicon than in float zone silicon. If.the de-

fect responsible for peak-Q involved oxygen or carbon one would expect

the luminescence intensity to be much stronger in pulled than in float

zone silicon. In fact, the opposite is observed, indicating that whereas

oxygen and carbon may be involved in processes which may compete with the

defect associated with peak Q, they do not participate directly in the

formation of this defect. The data suggest, therefore, that only lithium

and intrinsic defects are involved in the defect responsible for peak Q.

The disappearance of peak G and the appearance of lithium-depen-

dent peak Q can be explained by three possible mechanisms. First, lithium

prevents the formation of the defect associated with peak G and a new

radiative center involving lithium is created. Second, the defect asso-

ciated with peak G is formed and lithium is readily trapped at this center

to.form..a new.radiative center. Third, the defect associated with peak G

is formed and lithium is trapped to form a nonradiative center; independently,
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a new radiative center dependent on the presence of lithium is created.

A fourth possibility, that the defect responsible for peak-Q is always

present in irradiated silicon and is only observed when peak G is quenched

is highly unlikely since peak Q is not observed in lithium-free float

zone silicon annealed between 300 and 400°C. (Peak G has annealed out

in this temperature range, peak Q should not have.) The following dis-

cussion will show that the second mechanism is most likely.

It is well-known that impurity-vacancy defects such as the A-

and E-centers possess negative charge states in n-type silicon. Due to

their negative charge these and other centers are effective hole traps,

and their presence degrades the minority carrier lifetime. Lithium in

silicon is an interstitial donor. The Li
+

ion is mobile at room tempera-

ture
2 5 and should be easily trapped by negatively charged defects.

Wysocki
2
6 has presented strong evidence that the negatively charged defects

in lithium-diffused silicon are neutralized by trapping a Li ion. As an

example, the mechanism for E-center neutralization was suggested by Wysocki

to be

Li + (P-V) = Li-(P-V).

The hole capture cross section for the resulting neutral center is expected

to be two or three orders of magnitude smaller than that for the negative

center. According to this model, the minority carrier lifetime would not

be strongly affected by the resulting neutral defects, whereas the carrier

concentration would remain degraded.

It has also been shown that lithium forms recombination centers

with silicon vacancies and/or silicon interstitials. In n-type material

i
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the vacancy removes one electron from the conduction band and assumes the

negative charge state. A "stable" defect involving lithium could be

formed that would serve as a hole trap. This defect is of the form:

Li + V + e = (Li-V)a

Goldstein identified the only EPR spectrum in irradiated

lithium-diffused float zone silicon with a Li-interstitial complex.

Goldstein found that this center can account for only a small part of the

majority carrier removal rate and he suggested that the remaining loss is

due to the formation of the defect (Li-V)-.

Wysocki proposed that the minority carrier lifetime degradation

due to (Li-V) could be removed through neutralization of the defect in

the manner

Li
+
+ (Li-V) = (Li-V)-Li.

Minority carrier lifetime recovery attributed to this mechanism was

observed to take place at room temperature. The annealing process has

an activation energy of -0.61 eV, a value very close to the activation

energy for the diffusion of lithium in silicon, -0.66 eV. A similar

value of the activation energy was found for the neutralization of the

E-center. In the case of (Li-V) neutralization Wysocki interpreted this

to mean that lithium diffused to the defect rather than from it, since

the dissociation of (Li-V) would involve a small dissociation energy in

addition to the activation energy for lithium migration.

The important points in terms of the present investigation are
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that a lithium-vacancy complex forms and that annealing of this center

occurs at room temperature. It is likely that this center-and perhaps the

lithium-silicon interstitial complex account for the nonradiative centers

which quench the intrinsic luminescence in the present investigation. The

spectrum associated with peak Q, which is stable to .400 C, cannot be asso-

ciated with these centers, however.

The above models of defects and formation mechanisms suggest

three possible models for peak-Q. The defect responsible may be lithium

associated with the only intrinsic defect remaining, the divacancy; it may

be the neutral center (LiV)-Li; or it may be a complex lithium precipitate.

The first possibility best agrees with the data. The divacancy is produced

directly by irradiation and would be formed at the direct production rate

regardless of the lithium-vacancy-vacancy interaction which would inhibit

divacancy creation through vacancy-vacancy trapping. In fact, the direct

production rate for the divacancy in float-zone silicon is consistent with

the high fluence necessary to observe strong luminescence from peak-A.

In highly n-type silicon the divacancy has a doubly-negative charge state

and should easily trap mobile Li+ ions in a manner similar to the E-center

neutralization

(V + V) + 2Li+ = Li-(V + V)-Li

In the previous section arguments were presented for identifying the recom-

bination center responsible for zero-phonon peak G with the divacancy.

This assignment is consistent with the present model for peak-Q, in that

the spectrum associated with peak G is not observed in lithium-diffused
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float-zone silicon.

The lithium-dependent recombination center found in this study

fits into the theory of damage processes in heavily lithium-doped float

zone silicon as follows. Irradiation produces vacancies, interstitials,

and divacancies as primary defects; these defects trap electrons and

assume negative charge states, thereby reducing the carrier concentra-

tion. In the negative charge state the defects are hole traps and therefore

degrade the the minority carrier lifetime. If lithium is present the

damage center may be neutralized by trapping Li ions, thereby reducing

the hole capture cross section. When this occurs the center is no longer

an effective hole trap, and recovery of the minority carrier lifetime

occurs. The defect associated with peak Q is probably one of the end

products of recovery, most likely a lithium-modified divacancy. Unfor-

tunately, it is impossible to make a direct correlation between the growth

of peak Q and the recovery of room temperature carrier lifetime, since

the detection thresholds for the two measurements differ by several orders

of magnitude.

This speculative model is in agreement with the conclusions of

Young et al. These authors attributed the lithium-dependent optical

absorption bands at 1.4 and 1.7 p to electronic transitions of a lithium-

modified divacancy.

Comparison of the splitting data for peak Q (1.045 eV),. with

the results of group theory shows that the data best fit the trigonal

(111) orientational symmetry class. The data imply that no electronic

degeneracies are lifted by the stress. The orientational symmetry is
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consistent with the model previously suggested for the defect associated

with peak Q. The vacancies forming the divacancy lie along .a (111) axis.

Therefore, a lithium ion trapped in the nearest interstitial position along

the divacancy axis would produce a defect with the observed symmetry. A

divacancy with two substitutional lithium atoms (the divacancy may be

doubly negative in n-type material) would also agree with the observed

-symmetry.

4.5.2 Pulled Silicon

Lithium impurity has a less pronounced effect on the lumines-

cence spectra- from pulled silicon than--is the case for float zone silicon.

Zero-phonon peaks C and G were observed, but -a fluence of 1018 e/cm2 was

required to produce reasonable intensity. Peak C was much weaker than

peak G in lithium-diffused pulled silicon, whereas the peak intensities

were approximately equal in lithium-free silicon. In addition, the spectrum

associated with zero-phonon peak Q was observed at low intensity. Several

new peaks were observed following high-temperature anneal.- The data

suggest that lithium does not readily associate with luminescent centers

in pulled silicon and that oxygen does not readily associate with-primary

defects to form dxygen-dependent centers. 

The present understanding of the behavior of lithium in pulled

silicon is based on the existence of the LiO+ donor. Pell showed that

the lithium in pulled silicon associates with oxygen to form the inter-

stitial donor LiO+, provided the concentration of lithium does not exceed

the concentration of oxygen. Such was the-case for the lithium concentration
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in the pulled silicon used in this investigation. It is believed that

the LiO+ ion interacts with vacancies3 0 and interstitials2 7 to form defects

in a manner similar to the Li+ ion in float zone silicon, that is,

LiO + V + e = (LiO-V)

Unlike Li+ the ion LiO+ is not mobile at room temperature because the

lithium is tied to the immobile oxygen interstitial. Damage recovery

must involve the Li+ ion which is always present to some extent. Defects

such as the E--or:A-centers will anneal according to the equation described

earlier. The defect (LiO-V) will anneal in a similar manner,

(LiO-V) + Li = (LiO-V)-Li.

31,32
The activation energy for this process has been found to be -0.60 eV,

again suggesting that lithium is moving about and is responsible for the

annealing. Recovery requires elevated temperatures (-150 C) 3 3 or very

long periods of time at room temperature. This lack of rapid low tempera-

ture annealing is due to the fact that the diffusion constant for lithium

in silicon is replaced by an effective diffusion constant because of the

influence of Li coupling and decoupling with interstitial oxygen.34 That

is, the formation of LiO is an equilibrium relationship,

Li + 0 = LiO+

The effective diffusion is given by
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Deff =D /(1 + [0]).

In this expression .D is the diffusion constant of lithium ions in the ab-

sence of oxygen, [0] is the concentration of oxygen, and C is the reaction

constant for the formation of the LiO+ ion. At room temperature D for

silicon containing oxygen in concentrations of -101 7 atoms/cm3 is two

orders of magnitude smaller than D .

A qualitiative explanation for the luminescence spectra from

lithium-doped pulled silicon can now be presented. Prior to irradiation,

most of the lithium is tied up with oxygen in the form of LiO+ donors so

that the concentrations of mobile lithium and interstitial oxygen available

to associate with vacancies or to form higher complexes are greatly reduced.

Irradiation produces vacancies, interstitials and divacancies. Migrating

vacancies are trapped by LiO+ to form (LiO-V)- defects. A small equilib-

rium concentration of Li+ is available to trap vacancies and to be trapped

by divacancies. In this manner a small number of lithium-modified divacan-

cies are produced. In addition, the concentration of oxygen-dependent

centers such as the K-center will be smaller than that for lithium-free

silicon, since much of the oxygen is tied up as LiO or (LiO-V) All of

these suggestions are in agreement with the luminescence data.

4.5.3 Summary

The results of the present study of irradiated lithium-doped

silicon help to explain the damage recovery observed in silicon devices

containing lithium. It was shown in this investigation that luminescent
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centers usually seen in irradiated oxygen-lean silicon are not observed

when sufficient lithium is present, and that a lithium-dependent center

is formed whose trapping level is too shallow to have an effect on the

room temperature minority carrier lifetime. Previous studies using EPR

and electrical techniques have indicated the nature of the interaction

between lithium and the silicon vacancy and interstitial. The present

investigation suggests that the interaction between lithium and the

remaining primary defect, the divacancy, is of a similar nature, in that

lithium migrates to and neutralizes negatively charged centers, thereby

reducing the hole capture cross section several orders of magnitude and

effecting recovery of the minority carrier lifetime.
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V. SUMMARY AND RECOMMENDATIONS

Recombination luminescence has been shown to be a powerful

technique for studying defects induced in silicon by high-energy irradia-

tion. The luminescence observed following irradiation has the character-

istic form of a narrow zero-phonon peak with lower-energy phonon-assisted

peaks. Significant progress toward identification of the defects responsible

for luminescence has been made in this investigation. The results for

lithium-free silicon are given first.

The luminescence associated with zero-phonon peak G (0.97 eV)

is believed due to recombination involving the divacancy. The isochronal

and isothermal annealing of this peak are in good agreement with divacancy

annealing. The production rate, stress splittings, and impurity independence

of the luminescence are also in agreement with the assignment of peak G to

the divacancy.

The isochronal annealing of zero-phonon peak C (0.79 eV) is in

good agreement with annealing of the K-center. The energy of the peak and

the oxygen dependence of the luminescence are also consistent with this

assignment.

A broad band of weak luminescence is observed between 0.98 eV

and 1.16 eV following room temperature anneal. The intensity of this

luminescence is greater in float zone silicon than in pulled silicon and

greater in p- than in n-type silicon. A highly speculative model which

attributes the luminescence to donor-acceptor pairs involving carbon

is suggested.



85

A number of new spectra are observed following high-temperature

anneal. Zero-phonon peaks F (0.950 eV), K (0.925 eV), and (0.767 eV) are

observed in both n- and p-type pulled silicon. The defects responsible

for these peaks are thought to be dependent on oxygen. Zero-phonon peak

M (0.760 eV) is observed only in p-type pulled silicon and thus the defect

responsible probably involves both boron and oxygen. The annealing of

peaks F, K, and L suggests the association of these centers with centers

observed and modeled in optical absorption work.

This investigation reports the first luminescence spectra from

irradiated lithium-doped silicon. In float zone silicon peak G vanishes

and a new spectrum associated with a strong zero-phonon peak at 1.045 eV

(peak Q) is observed. Weak zero-phonon peaks N (0.990 eV), 0 (0.997 eV),

P (1.013 eV), and R (1.048 eV) are also associated with this spectrum.

The intensity of peaks Q and R are related by a Boltzmann factor in which

the energy is given by the energy separation of the peaks. The new

spectrum associated with peak Q is present following room temperature

anneal and vanishes after annealing near 4000C. The transition mechanism

involves recombination between two bound states. The stress splittings

for peak Q best fit the trigonal <111) orientational symmetry class. No

electronic degeneracies are lifted by the applied stress. It is likely

that this spectrum involves recombination at a neutral center formed by

a negative defect which has captured a Li
+

ion. The creation of this

center is a likely cause for partial recovery of the room temperature

minority carrier lifetime. The data are consistent with the assignment
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of this spectrum to a lithium-modified divacancy.

The effects of lithium are less pronounced in pulled silicon.

Zero-phonon peaks C and G are observed as in lithium-free silicon, but the

production rates for these centers are reduced. Peak Q is present but at

a low intensity, and a broad lithium-dependent band is found for energies

below 0.83 eV. New zero-phonon peaks V (0.785 eV), W (0.878 eV), and

X (1.001 eV) are observed following high-temperature anneal, as were zero-

phonon peaks F, K, and L. The data are consistent with the known proper-

ties of the LiO
+

ion. Formation of this defect restricts the migration of

free lithium and reduces the concentration of interstitial oxygen. The

ion associates with vacancies, thereby reducing the population of centers

involving the vacancy.

Experiments which should be performed in later research in this

area include the following:

1. Study of possible isotopic shifts in lithium dependent

lines for material doped with Li .

2. Study of defects involving carbon by investigating

carbon-doped silicon.

3. Irradiation of lithium doped float zone silicon at low

temperatures. Upon annealing to room temperature, it

should be possible to check the hypothesis that peak

Q is formed when lithium diffuses to modify the

divacancy center.
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